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Galerkin Methods for Singular Boundary Value 
Problems in One Space Dimension 

By Kenneth Eriksson and Vidar Thomee 

Abstract. Two Galerkin type piecewise polynomial approximation procedures based on 
bilinear forms with different weight functions are analyzed and compared. Optimal order 
error estimates are proved and numerical results are presented. 

1. Introduction. In this paper we shall discuss Galerkin piecewise polynomial 
approximation methods for the singular two-point boundary value problem 

b 
(1.1) Lu(x) -u"(x) --u'(x) + q(x)u(x) =f(x), x E I- (0,1), x 

u'(0) = u(l) = 0, 

and also for the corresponding time-dependent problem 

(1.2) u,(x, t) + Lu(x, t) = f (x, t), x E I, t > O, 
(1.2) u'(0, t) = u(1, t) = 0, t > 0, 

u(x,0) = v(x), x E I, 

where ut = au/at and u' = au/ax, and where b is a positive constant, q = q(x) is a 
bounded nonnegative function, and f and v are given data. We shall always assume 
that these problems admit unique solutions which are sufficiently smooth for our 
purposes. Note that if u E C2(1) and if f is bounded at zero, then the boundary 
condition there is automatically satisfied. In fact, for b > 1 it is easy to see that if 
u E C2((0, 1]) and u andf are bounded at zero, then u E C1(l) and u'(0) = 0. 

Problems of the form (1.1) and (1.2) arise naturally from spherically symmetric 
problems in higher dimensions. For example, if u = u(x) with x = (xl,..., xn) is the 
solution of the Dirichlet problem 

-Au + qu = f in B, 

u = 0 onaB, 

where B = B1(0) is the unit ball in Rn and A the Laplacian, and where q and f 
depend only on lxl, then u depends only on lxl and, introducing polar coordinates 
with x = lxi, one finds that u = u(x) is the solution of (1.1) with b = n - 1. 
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Also, the problem of finding a bounded solution of 

-v" + Q(y)v = F(y), y e (1, oo), 
v(l) = 0, 

reduces to (1.1) by means of the transformation of variable y = x-a for a > 0, 
giving b = 1 + a, q(x) = a2Q(x-a)x-2a, andf(x) = a2F(x -)x -2-2 

We shall consider approximate solutions of (1.1) and (1.2) in the finite dimen- 
sional space Sh of continuous functions which vanish at x = 1 and which reduce to 
polynomials of degree at most r - 1 on each subinterval I, = (xi-,, xi) of the 
partition of I defined by 0 = xo < xl < ... < xN =1. We set h=xl -xi 
h = maxl<I<Nhl, and A = h-1 minih, where the latter quantity measures the uni- 
formity of the partition. Throughout the paper we denote by C various constants 
which may depend on b, q, f3, and r, but not on h and the data of (1.1) and (1.2). 

We first consider the stationary problem (1.1). Writing the differential equation in 
the form 

-(xbu,), + xbqu = xbf, 

we find at once that u also solves the variational problem 

A (u, qp) = (xbf, qT) 'VT E 

where A(.,* ) denotes the symmetric bilinear form 

(1.3) A(u, p) = fI(xbuIgp + xbqup) dx, 

where (, ) is the inner product in L2(I), and where H1 is the space of all v E 
C((, 1]) which vanish at x = 1 and for which xb/2v' E L2. We are therefore led to 
pose as a discrete analogue of (1.1) the problem of finding Uh e Sh such that 

A(uh, X) = (X bf, X) VX E Sh. 

Using straightforward variational methods, Eisenstat, Schreiber and Schultz [3], 
[8] have shown the following weighted norm error estimate for this approximation, 
namely 

(1.4) IlXb/2( Uh - U)jj < ChrjjXb/2u(r)jj, 

where I I denotes the norm in L2(I) and U(r) the rth derivative of u, and, by a 
somewhat more refined analysis, Jespersen [61 was able to derive the uniform error 
estimate 

(1.5) hlUh - UIIL < C(ln ) h r Lu(r)IL 

where i = 1 if r = 2 and r = 0 if r > 2. For completeness and ease of reference we 
shall demonstrate (1.4) in Section 2 below. 

Turning to the time-dependent problem (1.2), we take the analogous approach and 
propose in Section 3, as a first step towards a complete discretization, the semidis- 
crete problem to find Uh = Uh(t) E Sh such that 

(XbUh,t, X) + A(Uh, X) = (Xbf, X) VX EE Sh, t > O, 

Uh(0) = Vh, 
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where vh E Sh is a suitable approximation of v. Given a basis for Sh this variational 
problem reduces to a nonsingular linear system of ordinary differential equations 
and therefore admits a unique solution. For the error in the semidiscrete approxima- 
tion we prove the estimate 

(1.6) ||x /(uh(t) - u I|x"/(vh - v)|| 

+ Chr{ IIxb/2v(r)11 + ftIxb/2u (r)I Ids} 

Having once obtained (1.4), the proof of (1.6) essentially reduces to a comparison of 
uh and the projection Uh E Sh of u defined by 

A(Cuh - U, X) = ? VXE Sh- 

In fact, it can be shown that 

Xb/2 ( -i U')J = O(hr), 

which is one power of h better than one might first expect. This type of superconver- 
gence was used by Wheeler [9] to derive optimal order uniform convergence for the 
approximate solution of a nonsingular problem. Using similar arguments we obtain 
essentially optimal order uniform convergence for x bounded away from zero, or, 
more precisely, for a suitable choice of Vh and for a E (0, 1), 

IIUh(t) - U(t)IIL= (a'l) < Cah{((n ) IIu(r)(t)IIL + (j|tI IXb/2U(2 ds )l) . 

For 0 < b < 1 one may, in fact, take a = 0. 
However, numerical experiments using the above procedures for both the sta- 

tionary and the time-dependent problems show a marked loss of accuracy near 
x = 0. Since this appears to be caused by the weight xb in the weak formulation of 
the problem, we shall consider an alternative approach for b > 1. 

We return first to the stationary equation (1.1), which we now write in the form 

- (xu')' - (b - 1)u' + xqu = xf, 

and observe that u satisfies the variational equation 

B(u, X) = (xf, X) VX E Sh, 

where B(., ) is the nonsymmetric bilinear form 

(1.7) B(u, X) = (xu', X') - (b - 1)(u', X) + (xqu, X). 

For b > 1 we therefore propose the discrete problem to find uh e Sh such that 

(1.8) B(Uh, X) = (xf, X) VX E Sh 

Note that for b = 1 this method coincides with the previous symmetric one. Note 
also that B(, ) is positive and that hence (1.8) admits a unique solution. In fact, for 
v 0 0 vanishing at x = 1 we have 

B(v, v) = (xv', v') + 2 v2(0) + (xqv, v) > 0. 

A natural norm associated with the above nonsymmetric variational formulation 
of the problem and therefore suitable for error estimates would be IIX'12 * 11. Instead 
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of pursuing an analysis in this norm we shall concentrate on the uniform norm and 
devote Section 4 to showing the optimal order estimate 

||Uh - UIIL O ChrIIU(r) IL. 

Turning now to the time-dependent problem, again with b > 1, we shall study in 
Section 5 the semidiscrete approximate solution Uh = Uh(t) E Sh defined by 

(Xuht, X) + B(uh, X) = (Xf X) VX E Sh, t > OS 

Uh (O) = Vh. 

We first show that if vh is chosen as the elliptic projection PBV E Sh of v defined by 

B(PBv - v, X) = ? VX E Sh, 

then 

hIUh(t) -U(11 Ch (ln<) { ICU( I(tILO + IlU )(O)hILO + f|Utt hIL ds}. 

We then use a smoothing property of the solution operator of the homogeneous 

semidiscrete equation to remove the restrictions on Vh, and show 

lluh(t) - u(0t)1LOL < C (ln h) t 1/Ix1/21(PBV - vh)11 

+ Chr(ln h) hIU(r)(t)IL + 11U(r)(O)IL + ft||U(r)|L ds} 

In practice our above methods require the evaluation by numerical quadrature of 

the coefficients involving q and f. As an example we demonstrate in Section 6, for 

the nonsymmetric stationary problem, how quadrature rules may be chosen so as to 

retain the convergence properties of the exact semidiscrete solution. 

Finally, in Section 7 we show some numerical results from computations on some 

test problems. 

For other treatments of problems of the type considered here, see, for instance, [1], 

[2], [41, [5], and [7], and references in these. 

In addition to the usual Banach spaces Lp = Lp(I) with norms IlL (II 11 when 

p = 2), and the Sobolev spaces Wpk with norms 

1l/p 

llviI Wpk = lV iLp JL 

we shall use the piecewise Sobolev norms defined by 

N 1/p 

IIVIIWkA,h = EhIV'hPWI(I') 

If the domain considered is a subinterval of I, this is specified in the notation. Also, 

we denote by IIAI Il the matrix norm maxiIE i Iai, where A = (aij). 

2. The Symmetric Method. In this section we shall consider the symmetric 

variational problem to find u E J1 such that 

(2.1) A(u, 9p) - (xbu', qY) + (xbqu p) = (xbf 9p) b, E 11, 
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and its discrete analogue to find uh E Sh with 

(2.2) A(uh, X) = (x f, X) VX E Sh. 

Note that since Sh C jI, it follows from (2.1) and (2.2) that the error Uh - u is 
orthogonal to Sh with respect to the bilinear form A(., * ), or 
(2.3) A(uh - u, X) = VX ESh 

This also defines uh as a projection of u onto Sh. 

Assuming that the solution of (2.1) is sufficiently smooth, we shall prove the 
following error estimate. 

THEOREM 1. Let u and uh be the solutions of (2.1) and (2.2), respectively. Then 

Ix b/2(Uh - u)II < ChrllXb/2U(r)11. 

Before we proceed to prove this result we state a simple Poincare- type inequality 
and also an approximation property of Sh. 

LEMMA 1. For a > 0, 1 < p < oo, d > 0, and functions v with v(d) = 0, we have 

11Xav11L (O d) <, dl IX aVl I Lp (0,d) 

Proof. We have at once 

JXaV(X)| = Xa fs aSV (S) ds -< 11XaV IIL1(0Od), 

so that by Holder's inequality 

l11X' 11Lp(O,d) <, d1P l lX aV|1|L.(0,d) -< d /P | |X av'| |(,d 

< d11XaV ||Lp(O,d)' 

which is the desired estimate. 

LEMMA 2. There is a constant C = C(b, 1s) and for each integer m with 1 < m < r 
and each appropriately regular v with v(1) = 0 an interpolant U E Sh of v such that 

Ixb/2( V - U')II Chm_lIxb/2v(m)11. 

Proof. On the first interval I,, let U be the polynomial of degree m - 1 determined 
by 

v jx1) = v(')(x1), j= 0,..., m - 1. 

On the remaining intervals, let U E Pm- (Ii) interpolate v at any m distinct points 
including the endpoints. It is well known that for such an interpolant 

IIV' - V IIL2(1) i 2(1,) 

so that for i > 1 

||X ( V )IL2(1,) < XibX b1hi I X/2()l L2I, 

K, C(b, B)h 2m2 b11xb2 v(M) 12 
llxb/2(v~~~ - U')II~l( L2)1, 

Repeated use of Lemma 1 shows the analogous estimate for i = 1. Summation over i 
then yields the desired estimate and completes the proof. 
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We are now ready to give the 
Proof of Theorem 1. With e= Uh - U we shall first prove directly from the 

variational formulation that 

(2.4) IIxb/2e'II < ChrlIIxb/2u(r)II, 

and then, by a duality argument, that 

(2.5) ||x b12e I -<, ChllXbl2 e'll 
Together these estimates prove Theorem 1. 

By our assumptions on q and by (2.3) we have 

IIxb/2eI112 < A(e, e) = A(e, u - X) 

s< C(q )||xb el |lxbl2(u - X')II VX E Sh, 

where we have used Lemma 1 in the last step. In view of Lemma 2 this proves (2.4). 
In preparation for the proof of (2.5), note that the space H' defined in the 

introduction may be equipped with the inner product A(., ) and the corresponding 
norm to form a Hilbert space. By the Riesz representation theorem there is a unique 
solution 0 E i' of (the adjoint problem) 

(2.6) A(q, (p) = (xbp, e) VT e f. 
Setting T = e and using (2.3) and Lemma 2, we have for a suitable X 

llxb/2e112 = A(e, O) = A(e, o - X) 
CIIXb72e'll Ixb/2(4, - X')II 

ChllXbl2 e'll IlXbl2,0,,Il 

It remains then to show that, for some constant C = C(b, q), 

(2.7) IIxb/2i/ II - Cllxb/2ell. 
For this purpose we note that the problem corresponding to q = 0, 

(2.8) (x' 4") = (xbp g) vq E 

has the unique solution 

4'x) 
- 

f1bf1~Sbg(S ) ds, 

and differentiating twice we obtain 

A"'(x)=-g(x) +bx-b-1 Sbg(s)ds. 

Recalling Hardy's inequality, 

x'f fds < 211fI1, 

we find 

IIx"724"'II b + b x-l (s/x)b/2sb/2gds , CIIXb"2glI. 

Since 0 solves the equation (2.8) with g = e - qo, we conclude 

(2.9) IIxb/2+"|I < C(IlXbl2ell + IlXb/2oll). 
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On the other hand, we have at once from Lemma 1 and (2.6) that 

Ixb/2 II2 A(p, 4) = (xb4, e) IXb/2ll IIxb/2 ell 

so that 

(2.10) IIxb/21 | IIxb/2ell. 
Together (2.9) and (2.10) complete the proof of (2.7) and hence of the theorem. 

3. The Symmetric Method for the Time-Dependent Problem. In this section we 
shall consider the semidiscrete parabolic problem 

(3.1) (x bUh,t X) +A(Uh, X) = (Xbf, X) VX E Sh, t > O, 

Uh(0) = Vh , 

where again A(.,. ) is the symmetric bilinear form defined in (1.3). We shall first 
show the following weighted norm estimate. 

THEOREM 2. Let u and Uh be the solutions of (1.2) and (3.1), respectively. Then 

x b/2(Uh(t) - U(t))II . IlXb/2(Vh - v)|| 

+ Chr{ IXb/2v(r)Il + fIlIXb/2U(r)ll ds 

Proof. We define the elliptic projection PA onto Sh by 
(3.2) A(PAu-u,X)=O VXCESh 

and write 

Uh - U = (Uh - PAU) + (PAU - U) = + P. 

We first note that, by the error estimate of Theorem 1, 

(3.3) ||xb/pt| . ChrllXbl2U(r)(t)ll 

< Chr{ IXb/2 + (r)ll + tIIXbl2u(r)II ds} 

Combining (3.1) and the corresponding weak form of (1.2) with (3.2), we find for 
0 E Sh that 

(3.4) (xbo,, X) + A(O, X) = -(xbp,, X) VX E Sh. 

With X = 0 this yields 
i d 1lXb/20112 + A(8, 0) = 

Ilxb2 all, 

from which we conclude 

d ||b128|<|x/P| 

and hence, using now Theorem 1 also to estimate pt, 

(3.5) IIxb/20(t)II < ilxb2(vh - PAv)II + jtIxb/2p,11 ds 

< IXb2(V- V)II + Ch r IlXb/2v(r)II + jIlXb/2 (r)I Ids} 

Together (3.3) and (3.5) prove the theorem. 
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We shall show now that a similar argument yields a superconvergent weighted 
norm estimate for 0' which, together with a maximum norm estimate for the 
stationary problem, implies an essentially optimal order uniform error estimate for 
(3.1) away from x = 0. 

THEOREM 3. Let u be the solution of (1.1) and Uh that of (3.1) with Vh = PAV. Then 
for any a E (0, 1) there is a constant Ca such that 

1Iuh(t) - U(t)IILO(a1) < C ah{((n )IIun (t)IILr + (jtIIXb/2u(r)II2ds)/}, 

where r = 1 if r = 2 and f = 0 if r > 2. 

Proof. With the notation of Theorem 2 we have by the maximum norm estimate 
(1.5) for the stationary problem 

| |p t)|| <Ch Iln 
- ||L 

Further, by obvious estimates 

II0IILo(a,1) '< 118 IL1(a,1) -< C(a, b)llxb/20fii, 

and hence the appropriate estimate for the latter quantity will complete the proof. 
Setting X = 0, in (3.4), we have 

IIb/20A2+ 1 d jIb/2pt 1I2 1b/122 llx @til2 + 2 A(0, 0) = - (xbp,, 0,) < + Ix llx t 11G2, 

so that in view of Theorem 1 

tA(0, 0) < llXb/2pt,I2 4 Ch2rIIxb/2u(r)II2 

and hence by integration, since 0(0) = 0, 

bl2of @(t)112 -<, A(O(t), @(t)) < Ch2r| IlXbl2U(r)112 ds. 

This completes the proof. 
Remark. For 0 < b < 1 we may take a = 0 in Theorem 3 and thus obtain 

(essentially) optimal order global uniform convergence of the approximate solution. 

4. The Nonsymmetric Method. For b > 1 we shall now analyze the approximate 
solution in Sh of the stationary problem (1.1) defined by 
(4.1) B(uh, X) = (xf,X) VX E Sh, 

where B(.,* ) is the nonsymmetric bilinear form 

B(v,w) = (xv',w') - (b - 1)(v',w) + (xqv,w). 

In view of the corresponding variational equations for the exact solution of (1.1) we 
have 

(4.2) B(uh - u, X) = 0 VX E Sh, 

and using this we shall devote the rest of this section to the proof of the following 
optimal order uniform error estimate. 
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THEOREM 4. With b > 1, let u be the solution of (1.1) and Uh that of (4.1). Then 

||Uh - UIIL O ChrhIU(r)IIL. 

The essential steps in the proof of this theorem are the following two lemmas. 

LEMMA 3. Under the assumptions of Theorem 4, 

hlUh - UIIL < ChIIUh - uIILOO 

LEMMA 4. Let PB be the elliptic projection onto Sh defined by 

(4.3) B(PBv - v, X) = VX E Sh. 
Then, for v vanishing at x = 1, 

II(PBO) ILOO CIIV IILIX 

Before we prove these lemmas we shall show how the theorem follows. 
Proof of Theorem 4. Note that, for X E Sh, 

Uh - U = PB(U - X) - (U -X), 

so that, by Lemma 4 and the standard approximation property of Sh, 

(4.4) IIUh - U IIL < C inf IIU' - X' ILeo < Ch rIIU(r)IIL 

The result now follows by Lemma 3. 
We shall now prove Lemmas 3 and 4. 
Proof of Lemma 3. Assuming that the maximal error is attained at the point 

x Ei, we have 

hlUh - UIIL = (Uh u)(xh) +f(Uh u') ds 

< I(Uh - 
u)(xi)l 

+ hIllu U'IIL, 

and it hence suffices to estimate uh - u at the interior mesh points xi, i = 1,..., 
N - 1. For this we shall use the Green's function g = gx vanishing at x = 0 and 
x = 1 and satisfying 

(4.5) B(v, g) = v(xi) Vv E W1 withv(1) = O, 

or, with 8 the Dirac delta function, 

(4.6) -xg" + (b - 2)g' + xq(x)g = (x- xi), g(O) = g(l) = 0. 

We shall show that this problem has a unique solution g such that 

N 

(4.7) lIXg"IlLh 1 1X1Xg IIL1(I,) < C9 
j=1 

where the constant is bounded independently of i for fixed b and q. 
Assuming this for a moment and using (4.2) and Lemma 1, we have 

I(uh - u)(xi)l = IB(uh - u, g - x) 

< - U'IILJ(IX(g' - )IIL, + 1ig - XIIL1) VX E Sh 



354 KENNETH ERIKSSON AND VIDAR THOMEE 

We shall prove the following 

PROPOSITION 1. There is a constant C = C(f) and for each appropriately regular v 
vanishing at x = 1 an interpolant U E Sh such that 

IIX(V' - ')IIL + IIV - ViILi < ChIIXV"IILLI 

Clearly, the proposition together with (4.7) completes the proof of Lemma 3. 
To prove the proposition, let u be the piecewise linear function which interpolates 

v at the points xj, j = 1,..., N, and which is determined on I, by the additional 
requirement that U'(xl) = v'(xl). We then have the standard estimate 

IIV - qlLl(j)+ hj1lv' - ViIL,(Ij) < ChjIV"II LI(Ij) 
= 1,..., N, 

and hence, for all intervals except I1, 

(4.8) IIX(V' - )|11L1() + IIV - V1IL1(j) < ChIIXV" IL1(Ij). 

In order to show the analogous estimate on I, we note that, for x E I, 

lx(v' - u')(x)l = xJ 1s-1sv,(s) ds < IIXV"I1L1(,), 

so that 

IIX(V' - 0)41(.1, < hllXV"IIL,(I1)' 

Further, since both v - v and its first derivative vanish at xl, we have 

i(V - U)(x)l =IJ( - x)v"(s) ds < IIXV'IIL1(Ij1 

and hence 
IIV - Q LJ(I,) < hilxv"IIL1(I1) 

which completes the proof of (4.8) for j = 1. The proposition now follows at once by 
summation of (4.8). 

It remains to show that (4.5) admits a solution with the properties stated. Recall 
that b > 1 and define 

( = (y (b-1) - 1)xb-1 foy> x, 

1 i (1 - xb-l) fory < x. 
nb- 1 

In the special case q = 0 the solution of (4.5) is gx = y( -,xi), and the verification of 
its regularity properties is straightforward. In the general case we may formulate 
(4.5) (or (4.6)) as the integral equation 

(4.9) g + Kg = y(x, xi), 
where K is the integral operator defined by 

Kp(x) = f1y(x, y)yq(y)Tp(y) dy. 

Since y is uniformly bounded and jjyx(x, )IIL, is bounded, uniformly in x, it follows 
by Arzela-Ascoli's theorem that K is compact on C(1). Hence (4.9) admits a unique 
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solution in C(J) as a result of the fact that the corresponding homogeneous equation 

B(v, Tp) = O Vv E W, with v(1) = 0, 

has only the trivial solution, since B(.,) is positive. It follows that (I + K)-1 is 
bounded on C(J) so that, in particular, 

1 - xb-I 
(4.10) 11911L. < CIIYIIL = C bl- 1< C. 

In order to complete the proof we note from (4.6) that 

lIXg"IIL'h <- C01911IL, + 11911LI) <- Cllg IILI 

and that from (4.9) and (4.10) 

1hg IlL, < IIY'IIL, + II(Kg)'IIL <- CIIY IIL1(1 + 119IIL) < C. 

This completes the proof of (4.7) and hence of Lemma 3. 
We now turn to the 
Proof of Lemma 4. We shall prove that for Vh = PBV we have 

(4 .11 ) 11|Vh |1|L < C11V'11LOO 

We introduce the principal part of B(, ), 

B0(V, W) = (V', xw' - (b -)w), 

and write (4.3) in the form 

(4.12) Bo(vh, X) = Bo(v, X) - (xq(vh - v), X) VX E Sh. 

We now introduce a basis { p( ; i = 1,..., N, k = 1,.. ., r - 1) for the trial 
functions by 

{-hi forx < xi- I 

P9ik(X) = -1) hi((x xi)/hi)k for xi1 < x < xi 
0O forxi < x, 

and set 

Vh = E VikPik 
l ,k 

Since the derivatives of the (ik are uniformly bounded, we have 

11|Vh|1|L. 
-< C max IVik l 

i,k 

and it thus suffices to bound each of the Vik appropriately. By (4.12) these 
components satisfy 

(4.13) EVikBO((Pik, X) BO(V x) - (xq(vh - v), X) VX E Sh 
i,k 

We shall now construct a basis { 4jl; j = 1,..., N, I = 1,..., r - 1) for the test 
functions such that 

(4.14) Bo (Tik I jl) = 0 for ij, 1 < k, 1 r -1, 

such that the matrix Bj = (BO(%k, 4'fl)) is nonsingular, with 

(4.15) IIBj'111 < C(xjhj)', 
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and finally such that 

(4.16) 11X4j<IILi + 11'iIIIL1 < Cxj1jh 

Assuming such a basis { ip1 already at our disposal, we observe from (4.14) that the 
system (4.13) now splits into one smaller system for each interval ij, namely, with (*) 
denoting column vectors, 

Bj(vjk) = (Bo(v, 4jl) - (xq(vh - v), 4'j)). 

Solving for Vjk we obtain, using (4.15) and (4.16), 

IVjkI < I lBl maXIBO(v, 4jl) - (xq(Vh - V), 4jl)I 

CxJ lh;lmax(Iv i1L .j114l - (b -'1)4jI1L + IlVh - VIILxIIjIIILj) 

< C{I||V1LO + IlVh - VIIL.) 

We now apply Lemma 3 to estimate the last term and obtain 

IIV*hIL < CIIV'IIL + ChIIVh - V iILX < CIIV'IILO + ChIIV'hIlL. 

Since h may be considered small, this implies the desired estimate (4.11). 
We now tum to the construction of the 4'l. This will be accomplished by a 

modification of the fj, in (0, xj l ), or by setting 

ijl(X) = 9j1(X) + E bj1,pq99pq(X), 
p <j 

q 

with bj,,pq suitably chosen. We thus think of j and I as fixed and note at once that 
(4.14) automatically holds for i > j since then cik vanishes on the support of 4f'. We 
also note that Bo(qjk, Ifjl) = BO(qjk, Ikj) and hence, with < , ) the usual inner 
product in R'-1, andy = Fk'kc]jk, 71 = ( 11" * I tr-1) E R 

(BjA, q) = Bo(y, y) > xy'2 dx > Cxj h jhq2, k, 

where we have used a scaling argument and the equivalence of different norms on 
Pr- (I) in the last step. In view of the equivalence of different norms on RK , we 
conclude in particular that (4.15) holds. Now consider the case i < j in (4.14). By our 
definition of Oj, and with the coefficients bpq bji,pq at our disposal we shall obtain 

BO (Pik, -hi + , bpqcppq) =0 fori <j,1 < k < r -1. 
p <j 

q 

Rearranging terms and using that BO(q9ik, 9pq) vanishes for p < i, we write this as 

EbiqBo ( cPik I cpjq ) = BO( t9ik, hj - ? bpqppq ) for i < j, 1 < k < r- 1. 
q i<p<j 

q 

Since the matrices B1 = (Bo(q9ik, q9iq)) are invertible, we can solve this system 
successively for i = j - 1, j - 2,. . ., 1. We have thus proved that the construction of 
a basis ( 4j, satisfying (4.14) is indeed possible, and we shall proceed now to prove 
also (4.16). 
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Since 4'j, equals pj on (xj1, 1), we have at once 

1xqzi L1(X,_ 1 .1) + Kj,ll L1(x,_1. 1) < Cxjhj, 

so it remains to show the appropriate estimate on (0, xj_ 1). 
For transparency we shall write 4 for 4j,, p for ?j,, and J for (0, xj- ) in the 

ensuing computation. We have 

11411|L,(J) -< lIX1112 1L2(J)IIX1'12V |L2(J) -<' CXVIIX /2+ ||L2(J)' 

and further 

I4,(X)I = -h f Xj-|l -1/21/2t() s 

h h+ IIX12 IIL2(X X) I)IIX 14'IIL2(J) < hj + (iln(x1jl/x))1/2Illx/24,'l L2(J) 

and hence 

114,'IIL1(J) + IIIIL1(J) - Cxjhj + CXjIIx1124'11L2(J)- 

It remains to show that 

(4.17) IIX112+fIIL2(J) <- Chj. 

Using the equation of 4' and (4.14), we have 

BO(, 4) = BO(p, 4) + i bpqBO(Ppq 4) = BO(q' () 
p <j 

q 

Since 

Bo(, 4) = (X+', 4')-(b - 1)(', ) 

IIX1/2,II22(J) + ''dx + b - 1 4,2(0), 

and since 

Bo(p, ) =xq?'q?dx +b 2 2(Xj_l), O J ~~~~~2 

we obtain 

IIx1 2,II2(J) = 2 2(Xj_1) _ 2 1 
{2(0) 

b 1 
2(X_) 

< Chf 

This shows (4.17) and thus completes the proof of Lemma 4. 

5. The Nonsymmetric Method for the Time-Dependent Problem. For the case 
b > 1 we shall now also consider the semidiscrete problem 

(5.1) (XUh,tX)+B(uh,X)= (xf,X) VXESh,t>O, 
Uh(0) = Vh, 

where B(.,) is the nonsymmetric bilinear form defined in (1.7). Recalling the 
definition of the corresponding elliptic projection PB onto Sh, 

(5.2) B(PBv- v, X) = ? VX E Sh, 
we shall first demonstrate the following uniform error estimate. 
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THEOREM 5. Assume that b > 1, and let u be the solution of (1.2) and uh that of (5.1) 

with Vh = PBV. Then 

IIUh(t) - U(0t)||L < C (ln) h{ I(u ()1(t)||L + |U)(O)I I L + IlUt II[L ds} 

Proof. We write 

Uh - U = (Uh - PBU) + (PBU - U) = + P, 

and recall first that, by Theorem 4, 

11P(t)11LO < Ch r||U(r )(011LOOI 

so that it only remains to estimate 0. For this we shall show below that, for any 

X E Sh, 

(5.) IIXIILC -< IIX'IIL, < C(ln- h lx1/2 X'll 

and to complete the proof, we shall apply (5.3) to X = 0 and show that 

(5.4) ||X'/ 0'(t)jj < Chr 11Utr)(r)IIL + fIIu(r)L ds} 

The first inequality of (5.3) is obvious, since x(1) = 0. For the second we have, 

using first the equivalence of the L1 norms over (0, x1) and (x1/2, x1) for functions 
in Sh, and then Schwarz' inequality, 

IIX IIL1 6 C11Xt IL,(xj/2,1) < CIIX112 /1 L2(X1/2,1) IIX/2X' I L2(xl/2,1) 

1 1/2 
< C I n- lx 1/2 X'll. 

In order to prove (5.4) we note that by (5.1), its analogue for (1.2), and (5.2) 

(5.5) (x0t, X) + B(0, X) = - (xpt, X) VX E Sh, t> O. 

With X = 0 this yields 

iix1/20'112 < B( 0,) < (IXi1/20til + IIX112ptII)jIX1120jIS 

and hence, by Lemma 1, 

(5.6) jjx1/2'lI X iix120tl + lfx1/2ptjl. 

Here, from Theorem 4, 

(5.7) iiX1/ P,(t)i| < IIP1(t)II < Chr 11U(r)(0)iL + ftiutr)IIL ds) 

In order to estimate the term in Ot, we differentiate (5.5) and set X = Ot to obtain 

(x0tt, 0t) + B(0t, 0t) = - (xptt, 0a) for t > 0, 

whence 

iix1/20 11d i1x /2 0tij < jjxl/2pttllj jx1120t1j, 

and 

(5.8) jjx1/20 (t)ji <jjx1/20t(0)II + f(ix1/2ptt 1 ds. 
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Since 0(0) = 0, we obtain from (5.5) with X = 0S(0) 

[0X1/20t (0)12 - - (Xpt (0), 0 (0)) < IIx1/2 pt (0)IX/12 , 

so that 

(5-9) lll2t0l <IP()l ChrjjU(r)()L 

Finally, again by Theorem 4, 

(5.10) (IXI1/2Ptt1I ds < f IIPttIlL ds Chrft IUt(tr)11Lds. 

Together, (5.6), (5.7), (5.8), (5.9), and (5.10) show (5.4) and thus complete the proof. 
In the proof of the above result the discrete initial data had to be chosen as 

Vh= PBV. We shall now show, using a smoothing property of the discrete solution 
operator, that any optimal order initial approximation will produce a discrete 
solution which is of essentially optimal order in the uniform norm for t positive. 

THEOREM 6. Let u and Uh be the solutions of (1.2) and (5.1), respectively. Then 

llUh(t) - U(t)11L 0 Ct 1/2lnIIX1/2(PBV - Vh)II 

+ C(ln- hr 1tU(1)(t)IL + IuI(r)(0)IIL + f (tr)IIL ds} 

Proof. Let ah(t) be the solution of the semidiscrete problem (5.1) with Vh = PBV, 

and let -q =ah - Uh. Then, in view of (5.3) and Theorem 5, it suffices to show that 

11X1/2 nf( t11 <- Ct -1/2 (ln 1 )/lx1/2 (?)11 

where , satisfies the homogeneous equations 

(5.11) (x-q,,X) +B(-q,X) =0 VX e Sh t > ?. 

With X = q we have 

(5.12) IIx1<21'II2 < B('q 7 = - (71, q) ) IIX1/2,qI 1IX112nI. 

It follows at once from (5.11) that 

1 d 
IjX1/272i12 + B(7, Ti) = 0, 

and hence 

(5.13) iixl/27q(t)112 + 2ftB(i, 71) ds = IIX1/271(0)112, 

which bounds, in particular, the second factor in (5.12). The proof will be completed 
by showing that 

(5.14) iX1/271t (t)JI < CtUlln 1 1X1/2 1(0)11. 

In the proof of this we shall need the boundedness of B(.,. ) on Sh, or 

(5.15) B(X ,) = (XX', ') - (b - 1)(X', D) + (xqX, D) 
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which follows easily if we note that, by (5.3), 

I(X, 01 -< IIX" IL 1I0 L.O < CInh 1IIX /2XI IX 1/2li Ij 

We now proceed with the proof of (5.14). We have from (5.11) 

(5.16) dt(tj21jx1/2'2tqj2) + 2t2B(7i, qt) = 2tIjx1/2"qt'I2. 

Here, using (5.15), 

iix1/2nji2 = -B(n nt) < Clnh-B(q, B) 2B(,qt, 1t)1/2 

Hence 

2tIjx1/27qII2 < 2t 2B(t, -1t) + C(ln h ) B(i, q), 

so that, by integration of (5.16) and using (5.13), 

t2l 1/ C1 I (n h OqB , n ) ds < c (lnw h l 1) , 0 I2 

This completes the proof. 

6. Numerical Integration. In this section we shall discuss the computational 
solution of the nonsymmetric variational problem for the stationary problem, i.e., the 
equations 

(6.1) B(uh, X) = (xf, X) VX E Sh. 

With respect to some basis ( xj) 
m for Sh we may write this system in the form 

M 

E Ui(Bo(Xi, Xj) + (xqXi, Xj)) = (xf, X.), = 1,..., M. 
i=1 

Except for simple choices of q and f, the terms involving these functions will have to 
be approximated by numerical quadrature, and we shall see now how this can be 
done so as to maintain the convergence rate of the exact solution of (6.1). 

Consider a quadrature formula 
n 

Q(v)- wsv(ys) f|v(x) dx I(v) 
s=1 

with ws > 0 andys E' [0, 1] and such that 

E(p)- Q(p)-I(p)= 0 Vp ePk. 

For example, the trapezoidal rule and Simpson's rule are of this form with k = 1 
and k = 3, respectively, and so is the Gauss rule with k = 2n - 1, if n is the number 
of nodes. For the computation of the terms in q and f we shall employ a composite 
scheme using such a quadrature method on each of the intervals Ii, or 

N N n 

Q(V) = E hiQ(v(xi-, + hi )) - ? hi E s(xi- + hiys), 
i=l i=1 s=1 

and define thus the approximate solution uh E Sh by 

(6.2) h(uh, X) - 0(h, X) + O(xquhX) = O(xfX) VX E Sh. 
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Since q and the quadrature weights w, are all nonnegative, it follows that B(, ) is 
positive, so that, in particular, (6.2) admits a unique solution. We shall prove the 
following estimate for the error introduced by the quadrature: 

THEOREM 7. With k > r - 2, b > 1 and q E Wo?3-r let Uh and Uh be the solutions 
of (6.1) and (6.2), respectively. Then 

lUh - UhIIL < Chk?3r( IfI Wk+3-r + lUll Wk+3-r) 

Proof. Set 0 = uh - Uh and F = f - qUh. We shall prove below that 

(6.3) I0IILX < ChIIO'IIL + ChJIIFIIWjh, 0 < j < k + 1, 

and that 

(6.4) II0'IILX < CIIOIIL + Ch'IIFIIWj,h, 0 < j < k + 2 - r. 

Since we may consider h small, we deduce from these estimates that 

II0I L~ < Chk ?3rIFIIWk+3-r,h 

< Ch { II|| fII|W + 3 - 1r + 1 min(r - 1, k + 3 - r) l u)h IIL } 

where we have also used Lemma 1 and the fact that Uh is a piecewise polynomial of 
degree at most r - 1. Given s with 1 < s < r we have for a suitable interpolant 
ui E Sh of u, using the first part of (4.4), 

hUh -UIIL< IUh- U'IIL + IIU - U IIL 

< C|U' - U IIL < Chs IIu(s)IIL , 

and since the interpolant may be taken to be a piecewise polynomial of degree at 
most s - 1 and since inverse estimates hold, we obtain 

llu(h )1Lh = ll(Uh - U) ||Lh < Ch ( )|uh - UIIL < CIIu(s)IIL 
Except for the verification of (6.3) and (6.4) this completes the proof of the theorem. 

For the proof of (6.3) we have first 

II0IILOO< max 1i0(xi)l + hIlO' IILO 

With g = gx defined as in the proof of Lemma 3 and with g E Sh the piecewise 
linear interpolant of g defined by g(x,) = g(xi) for i = 1, . . ., N and g(x) =g'(x 
we have 

0(x,) = B(0, g) = B(0, g - g) + B(0, g), 

and consequently, by the approximation properties of the interpolant stated in 
Proposition 1 of Section 4, 

0(Xi)I < CIIO'1L{o(1X(g' g')IIL1 + lig gilLj) + IB(0, g)l 

< Chll0'IIL + IB(0, g)I. 

It remains to estimate the latter term by the right-hand side of (6.3). We begin by a 
bound for g. We have first, using an inverse estimate, 
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and hence, using Proposition 1 once more, 

II'IIL, < 1IgILL(11) + lig' - g iL1(X1,1) + I9g IIL1(X1,1) 

< C(01gII1L1 + IIXg IILI) C 

Introducing the notation 
N 

t(v)-E hiE(v(xi-, + hi )) = Q(v) - I(v), 
i=l 

we have by (6.1) and (6.2) 

B(O, g) = t(xFg) - L(xqOg). 

By the assumptions on the quadrature rule Q we have 

jE(v)j = inf jE(v - p)j < C inf IIV - PIILO < CIIV'j)IIL, 0 < j < k + 1, 
P EPk P ePk 

and hence 
N 

IE(VI < C E hill(v(xi-1 + hi )) YIILoo 
i=l 

N 

< ChJ J 
hhiIv(j'Lw(,,), 0 <j < k + 1. 

i=l 

Using also the fact that, for piecewise polynomials of degree at most r - 1, 
N 

hhijjjlPL(I,) < CHPll L1, 
i=l1 

we thus obtain 
N 

It(xFg)I < Chi hill(xFg)(j11LIL. I,) 
i-l 

N 

< Ch|IiF|IWj,- h h(IIg'IIL(dI) + IIg`lLK(Id)) 
i=l 

< ChIjlFlIWJh (<jgh||L1 + IIglWL1) j ChhIIFIIWJh, 

and similarly 

It(xq0g)I < ChIjOj W1 ilgjl1 W1 < ChllO'IILj 

Together these estimates now prove (6.3). 
Next we shall prove (6.4). For this we adopt the ideas and notation of the proof of 

Lemma 4 and set U = ijkOjkc9jk so that, in particular, 

ll1 8I ILOO -< C M akXI#jk l, 110IlL~ 
Caxj,k, 

and so that for our special choice of test functions 4jj and in view of (6.1) and (6.2) 
we have 

q Ojk Bo ( 9&k, 4,jl) = BO (O , 'jl) = E(xF4'11) - Q(xqG4jj ), 
k 
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Recalling the estimates for the inverse of Bj = (BO(qpjk, 4Jl)), 

IlBj-111 < C(xjhj)-, 

and for the test functions jj, 
i1X4<IIL, + WI4j1IIL1 CXJhJ 

it only remains to find the appropriate estimates for E(xFiP,) and Q(xqG4j1) in 
terms of 4J' and x4j<. 

First, since Q(*) is bounded in Lo., we have 

N 

10(xq0-Ajj)l < C11011L,E h1W|jl|1L,,(I,) < C11011L,IIWjIIILI' 

In order to estimate E(xF4j') we have first 
N 

JE(xF+jjj < CIIFIiL. hjjj+jl11L.(l,) _< CjjF11L0tlWjl11Lj1 

which completes the proof of (6.4) in the case k = r - 2. For k > r - 2, set =j, 
and let q be a piecewise constant interpolant of x+. Then, as before, 

N 

j(Fq)j < ChjljFlIwjh h 
i~=l 

N 

ChjliFIl Wj, h E hjjjx+11L.(I,) 
1=1 

ChJ|IFjW.J h110ILj* 

Moreover, since Q is exact on Pk, we have for any Pr E Pr (with P (0)) 

IE(vpr)l = inf IE((v - P)Pr)l < C inf IIV PIl LIIPrI11L. 
P (ePk -r P Pk -r 

< C11V(j11LOO11Pr1lL%, 0< j k + I 

and therefore 

N 

jE(F(xi - -q))l < Chj'iFiiwhh , hjjjx4 - qijL (I) 0 <j < k + 1 - 
i=1 

so that, by the approximation properties of the interpolant, 
N 

E( F(xl4- q))l < Chj+lllFllwj,h E hJ,(x)'I1L (I) 
i=1 

< Ch;' ||F||WJ.-h(11X0IIL1 + 114AII ). 

Altogether the above estimates prove (6.4) and thereby the theorem. 
Note that with k = 2r - 3 in the local quadrature scheme, the O(hr) convergence 

of Theorem 4 is preserved in the computational scheme (6.2), and if k > 2r - 3, the 
quadrature error is at most O(hr+l) and thus dominated by the error in-the exact 
solution of (6.1). 
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7. Numerical Results. Several test problems have been run using our above 
methods with piecewise linear approximating functions on uniform partitions. These 
all show the same qualitative and quantitative behavior. 

For the stationary problem, with b = 2, ( gi}I- the basis of Sh defined by 

gi(x,)= Sij, and Li = uh(xi), the symmetric discrete variational problem (2.2) 
reduces to the difference scheme 

U1) + (X2qp0, qDO)Uo + (X2qTl, TO) Ul = (x2f, TO), 

- (X2f 1/2 (Ui + I 
l ) _, 421/2 ( U U 1 )) 

I +1 2 

+1 h E (X k= h(x2f, 91) for i 1,.. .,N- 1, 
k=i-1 

UN = 0 

where X2+ 1X2 = 1(5x2 + 2x1Xi+1 + 5X7+ 2 Similarly, the nonsymmetric method 
takes the form 

Uo - U1 + (xqp0, go)Uo + (xqpl, o0)U1 = (xf, qo), 

U,+ -2U1+U, Ui1-b_1 1 1+1 
.-X 

1+ 
2 -2 U'+ I - (xqcpkl,ci)Uk~ h2 2h h 

=(xf I ,), i-1,...IN -1, 

UN =0, 

and, for instance, using Simpson's rule for the local quadratures with x,+1/2 
(xi + x101)/2, qi+172 -q(xi+112), andL?+1/2 f(Xi+112)' 

h UO + U1 h 
Uo - U1 + --XI/2q,/2 2 -= Xl/21/2 

U_+2-12U& + U- 2 Ui1 Ui-i 
i h2 2h 

+ (Xi-112qj-112U.-1 + (Xi-112qi-112+ 2xiqi +Xi+112qi+112)U. 

+xi+112qi+112ui+,) 

= (Xi-112fi-12 + Xifi + Xi+112fi+172) fori = 1,. . ., N- 1 

UN=O. 

In our first example we present some numbers relating to the problem 

-u" -u'+4u=4 inI, x 
u'(W) = u(l) = O, 

the exact solution of which is u = sinh 2x/(x sinh 2) - 1. The tables below show the 
distributions of the errors over the interval for our two methods, using N = 10 and 
Simpson's rule (which is in fact exact for the nonsymmetric method in this case). 
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The symmetric method Nonsymmetric method 

x Ie(x)I x Ie(x)I 

0,0 0,004978 0,0 0,000375 
0,1 0,003170 0,1 0,000373 
0,2 0,002414 0,2 0,000368 
0,3 0,001958 0,3 0,000359 
0,4 0,001628 0,4 0,000344 
0,5 0,001358 0,5 0,000323 
0,6 0,001114 0,6 0,000292 
0,7 0,000873 0,7 0,000249 
0,8 0,000618 0,8 0,000190 
0,9 0,000333 0,9 0,000109 

Our next table concerns 

-u" ' 2, + (1-x2)u =7-2x2 + X4, U'(0) = u(1) = 0, 

with the exact solution u = 1 - x2. It shows maximum mesh points errors for some 
different values of N and using the trapezoidal rule, the midpoint rule, and 
Simpson's rule for the quadrature. As predicted by the theory all these schemes 
preserve the 0(h2) rate of convergence of the exact solution. The results indicate 
that since the errors in the nonsymmetric method are quite small, it is worthwhile to 
use the more accurate Simpson's rule. 

Symmetric 

trapez. midpoint Simpson exact 
N = 5 0,078773 0,098332 0,039826 0,039821 
N = 10 0,024214 0,030415 0,012256 0,012257 
N = 20 0,007193 0,009048 0,003635 0,003637 
N = 40 0,002064 0,002577 0,001023 0,001022 

Nonsymmetric 

trapez. midpoint Simpson exact 

N = 5 0,040000 0,020919 0,000729 0,000721 
N = 10 0,009997 0,005257 0,000178 0,000181 
N = 20 0,002495 0,001324 0,000047 0,000053 
N = 40 0,000621 0,000301 0,000009 0,000009 
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Finally, our above semidiscrete methods (using Simpson's rule for the quadrature) 
were applied to the time-dependent problem 

2 sinh2 x u - u"- u' + 3u = ih2-4e' + 3, x E I, t > 0, x x sinh 2 
u'(O, t) = u(l, t) = u(x,0) = 0, t > O, 

with exact solution u = (et - 1). sinh 2x/(x sinh 2) - et + 1. For the discretization 
in time the Crank-Nicolson scheme was used with At = 1/500. 

The first tables show the distribution of the errors over the interval for the two 
methods at t = 1 with N = 10. 

Symmetric Nonsymmetric 

x le(x)l x le(x)l 

0,0 0,008470 0,0 0,000713 
0,1 0,005368 0,1 0,000707 
0,2 0,004080 0,2 0,000699 
0,3 0,003311 0,3 0,000682 
0,4 0,002759 0,4 0,000656 
0,5 0,002311 0,5 0,000618 
0,6 0,001905 0,6 0,000560 
0,7 0,001503 0,7 0,000479 
0,8 0,001071 0,8 0,000366 
0,9 0,000581 0,9 0,000211 

Our final table shows the maximum mesh point errors at t = 1 for various choices 
of N. 

Symmetric Nonsymmetric 

N = 5 0,027922 0,002902 
N = 10 0,008469 0,000713 
N= 20 0,002486 0,000177 
N = 40 0,000713 0,000044 
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